

Adoption Pathways 4th Annual Meeting and Project Closing Workshop 17-19 May 2016

Addis Ababa, Ethiopia; The Capital Hotel

Project Achievements (2013 - 2015)

Emílio Tostão Lourenço Manuel

Mozambique Adoption Pathways Team

- 1. Emílio Tostão (UEM)
- 2. Lourenço Manuel (UEM)
- 3. Gaby Mandlate (UEM)
- 4. Zhephania Ndaro (Former MSc Student)
- 5. Niyomwungere Zénon (Former MSc Student)

Outline

- Key Objectives
- 3 year Key Achievements (2013-16)
- The way forward
- Take home message

4 Key Objectives

- Objective 1: Enhance the technology adoption process by generating knowledge and panel data
- Objective 2: Advance the understanding of how farmers'
 livelihood strategies and SAI investments interact and
 influence adaptation to climate variability
- Objective 3: Generate evidence on the socioeconomic impacts of adoption of multiple and complementary SAIP Technologies
- Objective 4: Enhance for gender-sensitive agricultural research and communication of policy

- 1. Establish a gender and plot disaggregated PANEL DATA on Agricultural Technology Adoption:
 - The AP project in Mozambique has conducted two rounds of a gender and plot disaggregated surveys from farmers in the project areas (objective 1)
 - 2013 data:
 - 400 households surveyed, and data entered, cleaned, and shared.
 - Country report with key descriptive statistics submitted.
 - 2016 data:
 - Data yet to be shared to Moz AP team by CYMMIT

- 2. Initiated the analysis of technology adoption over time using the established panel data (Objective 1)
 - There are already some key results from 2013 data:
 - Households, especially women, spend relatively too much time in agriculture
 - Efforts to increase access to inputs by women may need to be targeted at plots already managed by women themselves
 - Food insecurity varies across space and gender. Food security affects adoption and vice versa
 - Given current yields, there a lot of potential for yield increase

- 3. Contributed to understanding the causes of gender technology and food security gaps (Objective 1) trough:
 - Gender disaggregated survey implemented in 2013 & 2016
 - 2 MS dissertations completed using 2013 data
 - Impact of social networks on agricultural technology adoption (Niyomwungere, 2016)
 - Gender Differences in Technology Adoption (Ndaro, 2016)
 - One peer reviewed publication (2013 data)
 - Fertilizer use on individually and jointly managed crop plots in Mozambique (Paswell et al., 2015)

- 1. **Establish panel data**: the project will conduct two rounds of surveys from farmers in the project areas (objective 1).
- 2. **Dynamic adoption analysis**: package of technology adoption analysis over time will be carried out (Objective 1)
- 3. **Gender and technology and food security analysis**: causes of gender technology and food security gaps analysis over time (Objective 1)
- 4. Livelihood strategies, SAI investment and risk assessment (Objective 2)
- 5. **Impacts analysis**: package of improved farm practices, and policies impacts on welfare (direct and indirect) of different group of farm households' (objective 3)
- 6. Capacity building, communication, policy advocacy: training of researchers and extension workers on how to make project research outputs more usable to farmers, policy makers, development practitioners, researcher managers and others (objective 4).

- 4. Livelihood strategies, SAI investment and risk assessment (Objective 2)
 - Initial results on adaptation options that reduce vulnerability to climate shocks available – included in the 2013 Country Report
 - Contribution submitted to the lead partner:
 - Livelihood strategies and ex-ante and ex-post coping strategies to climate risk in Mozambique

- 5. Generate evidence on the socioeconomic impacts of adoption of multiple and complementary SAIP technologies (Objective 3)
 - Evidence of impact will being generated in near future using panel data is available

- 5. Livelihood strategies, SAI investment and risk assessment (Objective 2)
 - Initial results on adaptation options that reduce vulnerability to climate shocks available – included in the 2013 Country Report
 - Contribution submitted to the lead partner:
 - Livelihood strategies and ex-ante and ex-post coping strategies to climate risk in Mozambique

- 6. Capacity building, communication, policy advocacy (objective 4).
- Researchers AP-Moz received training in gender analysis, and risk analysis
- Training of 2 students who used AP data in their MS dissertation
- Training supervisors and enumerators on filed data collection (2013 & 2016)
- Infrastructure capacity building: AP-Moz received vehicle for field work
- We need something to extend.
- With 2nd round data we will have solid evidence to extend before we engage extension
- Mozambique Economic FORUM have used insights from AP in Ag debate
- AP coordinator in charge of a new Policy Center which works with 5 key Ministries – facilitates communication and uptake of results

- 7. Sustainability (objective 4).
- AP project being used as a baseline for other projects
 - AP project has facilitated submitting research proposal for related research on Bill & Melinda Gates funded PEARL Call

Challenges & Oppurtunities

7. Challenges

- Working with gender and plot disaggregated data is very demanding
- Thin team (lots of work for the same few people)
 - Collect data
 - Enter data & clean
 - Write reports
 - Communicate results

Australian International Food Security Research Centre

aciar.gov.au/aifsc

Challenges & Oppurtunities

8. Opportunities

- Capacity building
- Scale up local team
- Get colleagues involved (but hard to competition for time)
- Recruit more students
 - Two already graduated writing dissertations using AP data

Thank You

aciar.gov.au/aifsc

A interview being conducted in Sussundega

Norwegian University of Life Sciences (NMBU), Norway

Soloine University of Agriculture, Tanzania

Technology adoption in the 2012/13 Agricultural Season

This unfolding story will be updated with the 2015/2016 data when it is available

Selected demographic characteristics

Variable	Female (N=57)	Male (N=328)	Total (N= 385)	t-value
Age of household head (years)	51.6	48.2	48.7	1.58
Household size (absolute numbers)	5.1	7.1	6.8	4.09***
Household size (adult equivalent)	2.6	3.3	3.2	4.10***
Number of oxen owned	2.0	3.7	3.6	3.92***
Number of small ruminants owned	7.8	5.2	5.5	0.78
	Male	Female	Total	X ² p-value
Education level of household head				
(% that attended school)	58.88	84.07	79.18	0.000
Marital status of the household head				
(% households)				
Married living with spouse	15.79	93.98	82.52	
Married but spouse away	1.75	1.20	1.29	
Never married	5.26	0.30	1.03	
Divorced/separated	17.54	0.90	3.34	
Widow/widower	59.65	3.61	11.83	

Male headed HH:

- Younger
- More literate
- Bigger family
- Living with spouse
- Own more oxen

Agriculture, Tanzania

Queensland, Australia

Overall fertilizer adoption (% hh)

About 34 to 39 % of households adopt fertilizers SIMLESA: still room to increase adoption

Fertilizer adoption by district (% hh)

fertilizer adoption by gender (% hh)

- Gender matter
- <u>Male</u>: more fertilizer than female
- SIMLESA: More targeting of SAIPs by gender may increase adoption

fertilizer adoption intensity by district (kg/ha)

fertilizer adoption intensity by gender (kg/ha)

Acces to Credit, Labor, and Land

Overall access to credit by (% of HHs)

Lack of credit limits technology adoption, especially of marketed inputs SIMLESA: may need to go beyond SAIPs and look at credit and other market constraints

Access to credit by district (% of HHs)

Credit <u>needs</u> are sensitive to geography. SIMLESA: targeting and look beyond SAIPs

Access to credit by gender (% of HHs)

Credit <u>access</u> sensitive to gender. SIMLESA: targeting and look beyond SAIPs

Family labor use (man-day)

Gender matters

Male: land prep. & sowing, and weeding (33.4% of male time)

- Female: harvesting, threshing & weeding (33% of female time)
- SIMLESA: adoption may be limited if SAIPs require more time than convectional technology, especially for women

100

90

labor use (person-days)

Weeding

Harvesting

Agriculture, Tanzania

Threshing

Land and other asset ownership by type and gender of hh MEMBER

Security Research Centre

	Male									
									gov	
				Female	Diffe	Difference		Aggregate		
Asset	n	mean	n	mean	t statistic	p-value	N	J	mean	
Land	277	3.87	53	3.18	2.52	0.051	33	0	3.8	
Laria	_,,	3.07	33	3.10	2.32	0.031	33		3.0	
Picyclo	325	1.20	60	0.47	6.71	0.000	38) E	1.07	
Bicycle	323	1.20	60	0.47	6.71	0.000	30	5	1.07	
		4 4 4						_	4.00	
Cellphone	325	1.44	60	0.69	5.08	0.000	38	5	1.32	
Hoe	325	7.45	60	3.80	7.06	0.000	38	5	6.84	
Sickle	324	2.05	60	0.92	5.70	0.000	38	4	1.86	
	225	4.04	60	0.00	C C4	0.000	20		1.60	
Machete	325	1.84	60	0.89	6.61	0.000	38	5	1.69	
Radio	325	2.03	60	0.72	2.73	0.007	38	5	1.81	

Men members own more assets than women

SIMLESA: initial endowment may bring differences in adoption if they are resource intensive like fertilizer

Who gets to decide? Intra-household decision making

Intra-HH decision making: sale of assets and livestock (% transactions)

NO difference across gender and geography for all plotted activities

HH head make decision alone less than 50% of the time; 25% of the time a decision is made by spouse

Intra-HH decision making: land preparation, practices and harvesting time

female head decide more than male heads

<u>Difference</u> across gender and geography for all plotted activities

SIMLESA: How could free more time of women who are multitasked (food security)

HH head make decision more than 60% of the time; 20% of the time a decision is made by spouse_

Household Production Constraints

Main constraints in accessing input: Availability of seed (% hhs)

SIMLESA: may need to go beyond SAIPs and look at other market constraints

Seed availability is an issue...

Main constraints in accessing input: Price of seed

SIMLESA: may need to focus much on other market constraints

With no credit adoption may be limited

But price of seed seems even more important

Main constraints in accessing input: Access hired to labor

SIMLESA: may need to focus much on other market constraints

Access to labor seems to be relatively less of a problem than purchased inputs

Maize yields

Agriculture, Tanzania

Table 3.6. Maize productivity by district (kg/ha)

Maize variety	Manica (N=202)	Susundenga (N=212)	Angonia (N=256)	F-value	p-value
R201	726.59	1227.78	658.79	3.45	0.051
PAN 67	867.60	487.59	571.21	3.12	0.054
PAN 6777	735.85	534.28	634.29	0.55	0.584
Matuba (OPV)	688.94	522.45	887.50	1.33	0.282
Local	1542.75 a	1253.27 b	1003.33 c	6.80	0.001
All varieties	1266.93 a	1040.16 ab	896.00 b	3.22	0.041

Yield tend to be slightly bigger than national average, but still a yield gap with yields in Etiopia, Kenya, and Malawi

SIMLESA: As a big role by promoting SAPIs as a package (seed, ferliliser, extension, ect)

Yield differences by variety and geography. Local variety performs better than hybrids

Food security

Household own assessment of food security status (% hhs)

36% of households are food insecure

Food security affects adoption and vice versa

- Chronic food insecurity Transitory food insecurity
- Break-even food security Food surplus throught

aciar.gov.au/aifsc

Manica: 27% of hhs are food insecure

Sussundenga: 36% of hhs are food insecure

Angónia: 42% oh households are food insecure

SIMLESA: More resources (time, extension

messages) to Angónia?

Transitory food insecurity Food surplus throught

Sokoine University of

Agriculture, Tanzania

aciar.gov.au/aifsc

aciar.gov.au/aifsc

Male: 34% of hhs are food insecure

Female: 42% of hhs are food insecure

SIMLESA: More resources (time, extension messages) to women?

Agriculture, Tanzania

Strategies to deal with Food shortages

Agriculture, Tanzania

Dealing With Food Shortages (% individuals)

consistent responses from men and women

10 to 13% of individuals report <u>reducing meals</u> or facing <u>short run food shortages</u>.
50 to 60% never reduced meals and/or experiencing food shortages

Food security (% individuals)

consistent responses from men and women

Sleep hungry

All day without eating

Less that 5% of individuals sleep hungry or go a day without eating About 80% report never sleep hungry or go a day without eating

Take home message

- Adoption of SAIPs is gender and space sensitive.
- ⇒ more targeting could help adoption
- There is limited access to credit, and credit <u>need</u> and <u>access</u> are sensitive to geography and gender.
- ⇒ May need to go focus even more is market development
- ⇒ May need to look at other market constraints that may hinder adoption
- Men members own more assets than women
- ⇒ initial endowment may bring differences in adoption if they are resource intensive like fertilizer

- Households, especially women, spend relatively too much time in agriculture
- ⇒ adoption may be limited if SAIPs require more time and assets than convectional technologies, especially for women
- Given current yields, there a lot of potential for yield increase
- ⇒ SIMLESA could play important role in coming years
- Food insecurity varies across space and gender. Food security affects adoption and vice versa.
- ⇒ may need to prioritize and/or devote more resources to households that are more vulnerable to food insecurity

The way forward

- Engage on data processing
 - Consider both 2010 baseline and 2013 data
 - Consider plot and gender disaggregation
 - Engage more students to use data for their theses
 - Produce papers and briefs that might feed into policy
- Return the information to the farmers and extension works
- Convene policy dialogues (CEPPAG, ReNAPRI)
- Run the second round of AP survey in 2015

Thank you for your attention!

Obrigado pela sua atenção!

